skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Yujun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. • This paper studies the problem of structured 3D reconstruction using wireframes that consist of line segments and junctions, focusing on the computation of structured boundary geometries of scenes. Instead of leveraging matching-based solutions from 2D wireframes (or line segments) for 3D wireframe reconstruction as done in prior arts, we present NEAT, a rendering-distilling formulation using neural fields to represent 3D line segments with 2D observations, and bipartite matching for perceiving and dis- tilling of a sparse set of 3D global junctions. The proposed NEAT enjoys the joint optimization of the neural fields and the global junctions from scratch, using view-dependent 2D observations without precomputed cross-view feature matching. Comprehensive experiments on the DTU and BlendedMVS datasets demonstrate our NEAT’s superiority over state-of-the-art alternatives for 3D wireframe reconstruction. Moreover, the distilled 3D global junctions by NEAT, are a better initialization than SfM points, for the recently-emerged 3D Gaussian Splatting for high-fidelity novel view synthesis using about 20 times fewer initial 3D points. 
    more » « less
  3. High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes. 
    more » « less